

恒力石化煤制氢联产醋酸项目 气化装置介绍

2019年9月

目录

- 二、气化装置建设情况
 - 三、装置开车及运行情况
- 四、运行优化

恒力石化 (大连) 炼化有限公司介绍

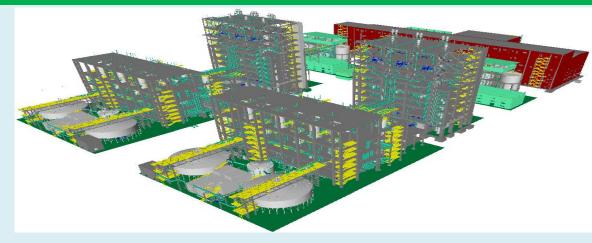
恒力2000万吨/年炼化一体化项目位于辽宁省大连市长兴岛临港工业园区,是国家对民营企业开放的第一个重大民营炼化项目,也是新一轮东北振兴的战略项目。

项目建设以450万吨/年芳烃联合装置为核心的2000万吨/年炼油装置、化工装置和公用工程、辅助生产设施及码头工程。

项目于2017年4月开工建设,2018年12月投料开车,2019年3月24日打通生产全流程,5月17日全面投产,刷新了同行业同体量项目最快建设记录。

恒力石化煤制氢项目介绍

为了满足重油加氢的需求,需建设最大能力为100万Nm³/h有效气的煤制氢装置,以港口来的原煤为原料,生产氢气,并制备一部分本项目所需的甲醇、醋酸等产品。


煤制氢项目,包括为空分装置8万Nm³/h、制氢装置50万Nm³/h、甲醇装置70万t/a、燃料气甲烷化12万Nm³/h和醋酸装置。

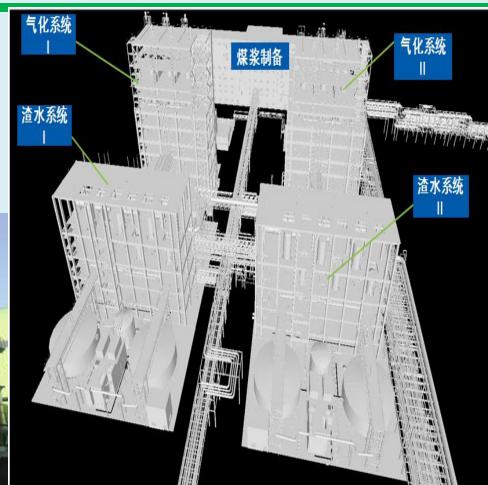
恒力石化气化装置简介

煤制氢煤气化装置技术采 用国内自主知识产权的四喷嘴 对置式水煤浆加压气化技术, 装置建设六套四喷嘴水煤浆加 压气化炉,气化炉直径3.88 米,5开1备模式运行。气化炉 操作压力6.5MPa, 气化炉单 炉投煤量3000吨/天(干基), 单炉具备20万Nm³/h有效气的 生产能力。

装置构成

煤浆制备系统9个系列,正常7开2备; 气化系统分列两个气化框架内,每个 气化框架设3套气化系统,一套烧嘴冷却水 系统;

两个渣水框架,每个渣水框架设**3**套煤 气初步净化及渣水处理系统;



装置构成

每个渣水框架对应**2**台沉降槽,**1**台 灰水槽,一套高密度池,一套冷凝液汽提 系统;

真空过滤系统:设4台过滤机,4台干燥机,一台过滤机对应一台干燥系统。

1、恒力气化装置 **2017**年**4**月开始开槽放线 打桩,土建开始。

2、2017年 10月5日气 化框架混凝 土结构封顶。

3、2017 年10月开 始气化框 架7楼以 上安装钢 结构。

二、装置建设情况

4、2018年2月陆续开始设备安装管 道预制,**3**月中旬开始管线焊接安装。

7#磨煤机大齿轮安装

给料煤浆槽筒体焊接

吊装锁斗冲洗水冷却器

渣水2五层吊装酸性气废热锅炉

志恒力久远, 品质赢天下

二、装置建设情况

5、2018 年4月27日第 一台气化炉吊 装就位,5月 11日第六台气 化炉顺利吊装 就位。全面进 入设备安装阶 段。

6号炉吊装就位

4号炉吊装就位

1号炉吊装就位

2018. 04. 27

2018. 04. 30

2018.05.01

2018. 05. 06

2018. 05. 08

2018.05.11

3号炉吊装就位

2号炉吊装就位

二、装置建设情况

6、气化装置 共有设备733台 (套),含静设 备325台, 动设 备408台, 换热 器类52台,容器 类设备175台, 泵类设备238台。

1、2018年 11月26日点 火原始烘炉, 2019年2月8 日18:40分6 号气化炉炉 始二次烘炉 准备投料。

恒力石化 HENGLI PETROCHEMICAL

2、2019年2月15日中班原始化工投料: 18:10分6号气化炉CD 烧嘴投料, 火炬18:24着火,火炬着火以后18:26分投AB烧嘴。一次投料成功,标志着气化装置进入试运行阶段。

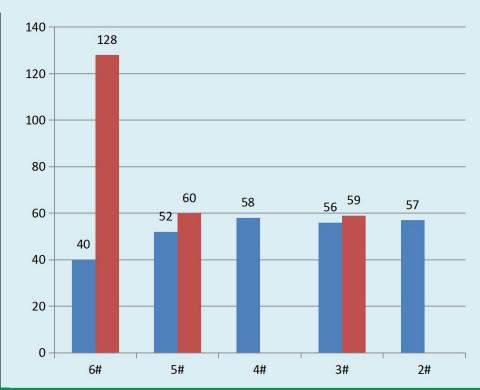
3、原料煤使用

设计煤种

序号		名称	单位	设计煤种*
		收到基水分 Mar	wt%	15.00
	工业分析	水分 Mad	wt%	6.05
1		灰分 Ad	wt%	11.50
		挥发分 Vd	wt%	33.26
		固定碳 FCd	wt%	55.24
		碳 Cd	wt%	68.64
	元素分析	氢 Hd	wt%	4.07
		氮 Nd	wt%	0.74
2		硫 Std	wt%	1.09
		氧 Od	wt%	13.96
		灰分 Ad	wt%	11.50
		变形温度 DT	°C	
3	灰熔点	软化温度 ST	°C	
		流动温度 FT	°C	1350
4	煤浆浓度		wt%	61

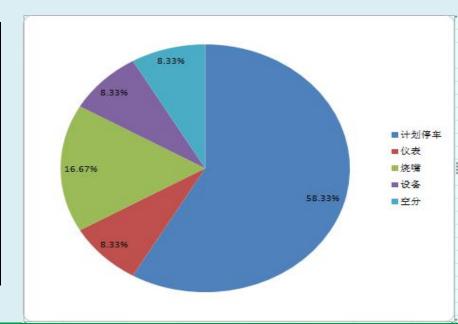
操作煤种

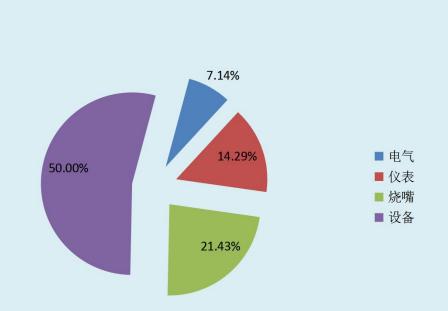
项目		单位	操作煤种
	M_t	wt%	19.5
	M_{ad}	wt%	4.45
工业分析	A_d	wt%	6.31
	V_d	wt%	34.94
	FC_d	wt%	58.75
	C_d	wt%	76.67
	H_d	wt%	4.73
元素分析	N_d	wt%	0.95
	$S_{t.d}$	wt%	0.70
	O_d	wt%	10.64
成浆浓	度	wt%	59.5
	DT	°C	
灰熔融性	ST	°C	
沙八州7附3 [工	HT	°C	
	FT	°C	1206


入炉煤分析数据

序号		名称	単位	入炉煤平均 值	
	0	收到基水分Mad	wt/%	17.96	
1	工业分析	水分Ad	wt/%	8.07	
1		挥发分Vd	wt/%	6.84	
		固定碳FCd	wt/%	53. 34	
2	元素分析	碳Cd	wt/%		
		氢Hd	wt/%		
		氮Nd	wt/%		
		2 八汞//1//	硫Sd	wt/%	0.42
			氧Od	wt/%	
	-MC192000008	灰分Ad	wt/%		
3	成浆浓度	Sitt entra destri	wt/%	60.08	
4	辉熔融性	变形温度-Ash	°C	1123	
		软化温度-Ash	° C	1148	
		半球温度-Ash	° C	1153	
		流动温度-Ash	°C	1163	

4、气化炉运行时间统计


, j. i.	第一次		第二次		
炉号	时间	天数	时间	天数	
6#	2月15日-3月27日	40	5月11-9月16日	128	
5#	3月20日-5月11日	52	6月23-8月21日	59	
4#	3月30日-5月26日	58			
3#	4月28日-6月23日	56	7月17-9月14日	59	
2#	5月24日-7月20日	57	8月20-至今		


5、气化炉停车次数统计

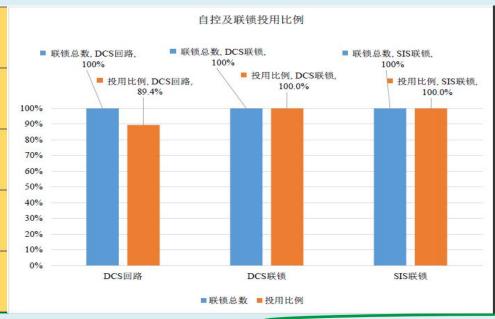
炉号	运行时间 h	次数	计划停车	误操作	电气	仪表	烧嘴	设备	空分
6#	3864	5	2				2		1
5#	2664	3	2					1	
4#	1392	1	1						
3#	2832	2	1			1			
2#	1368	1	1						

6、气化炉连投原因统计

炉号	运行时 间h	次数	电气	仪表	烧嘴	设备	空分
6#	3864	5	1	1	2	1	
5#	2664	5				1	
4#	1392	1			1		
3#	2832	6		1		5	
2#	1368	1				1	

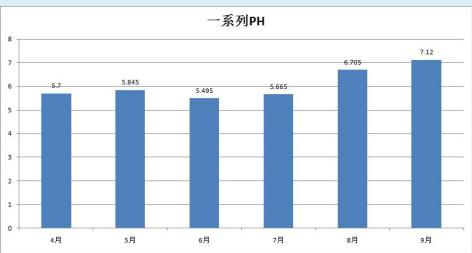
7、消耗情况

煤浆添加剂添加率2.25‰,分散剂添加率60-70ppm,絮凝剂添加率1ppm。



8、在线仪表投用率、仪表自控率、连锁投用率

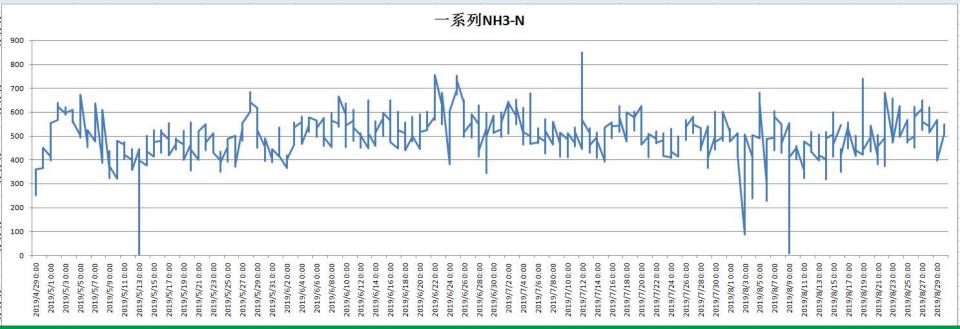
			·
项目	自控总数	投用数量	投用比例
DCS回路	170	152	89. 4%
DCS联锁	110	110	100%
SIS联锁	192	192	100%
求和	472	454	96. 2%



1、气化开车灰水槽PH偏低

气化2月15日开车,3月20开第二台以后PH出现偏低现象;7月17日前一系列平均5.73,二系列平均5.91,给生产带来较大压力,后经过对PH偏低原因分析和总结,通过调整药剂配方、工艺操作优化和相关技改措施,灰水PH得到有效控制。

效果: 目前一系列PH7.12; 二系列PH7.9。


2019-9-20

2、气化开车灰氨氮偏高

开车以来一系列氨氮平均495.4mg/l,二系列平均494.9mg/l不能满足污水处理需要,污水处理要求灰水氨氮小于300mg/l;

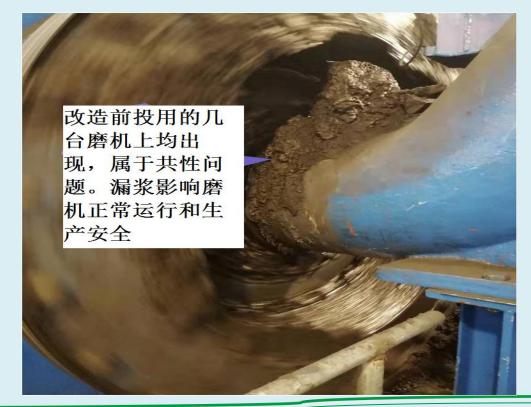
采取的措施:经论证新上灰水预处理系统,氨氮降到300mg/I以下再送污水处理工段。

3、灰水角阀下三通磨损

停车检查发现5台气化炉均不同程度出现黑水角阀下部扩散段磨损,5号炉第一个周期出现磨穿现象;

采取的措施: 经与阀门制造厂家、扩散段制造厂家沟通更换阀内件、重新制作扩散段耐磨层。

效果: 8月下旬日停5号炉检查效果较好。



4、磨煤机进口漏煤浆处理

气化装置制浆单元磨机实际处理能力在130-140T/h(湿基)左右,设计单 95-105T/h(干基)。磨机处于高负荷运转。生产以来暴露问题,最为突出的是磨机入口管泄露,泄露状态下每天需清理磨机基座,泄露比较严重时清理次数较多。现场卫生难以维持,设备工作环境恶劣,存在消防隐患,操作人员清理工作量大。

4、磨煤机进口漏煤浆处理

改造方案实施后, 磨机泄露明显减少,设 备及基础积煤彻底消除,同时减小了废浆损失、 现场清理工作量和检修工 作量;降低了易燃易爆 工作环境下的安全风险。

总投资1620亿元,占地15平方公里,主要包括2000万吨/年炼油、450万吨/年芳烃、600万吨/年柴油加氢、760万吨/年蜡油加氢、640万吨/年渣油加氢、960万吨/年重整、130万吨/年混合脱氢、60万吨/年润滑油加氢、150万吨/年乙烯、180万吨/年乙二醇 0万吨/年PTA等装置,其中每年生产汽煤柴油600万吨,比例30%,为进一步完善芳烃产业链,2019年建设240万吨/年聚酯瓶片项目,计划年底前开工,建成后产业园总产值将达到3500亿元,完成国家万化产业基地(2006)